non-abelian, supersoluble, monomial
Aliases: C32⋊C9⋊1S3, (C3×He3).1C6, C33.4(C3×S3), He3⋊5S3.1C3, C3.4(C33⋊C6), C33.C32⋊3C2, C32.28(C32⋊C6), C3.1(He3.C6), SmallGroup(486,7)
Series: Derived ►Chief ►Lower central ►Upper central
C3×He3 — C32⋊C9⋊S3 |
Generators and relations for C32⋊C9⋊S3
G = < a,b,c,d,e | a3=b3=c9=d3=e2=1, ab=ba, cac-1=ab-1, dad-1=ac6, eae=a-1, bc=cb, bd=db, ebe=b-1, dcd-1=a-1bc7, ce=ec, ede=d-1 >
Subgroups: 542 in 59 conjugacy classes, 10 normal (all characteristic)
C1, C2, C3, C3, S3, C6, C9, C32, C32, C18, C3×S3, C3⋊S3, C3×C9, He3, 3- 1+2, C33, C33, S3×C9, He3⋊C2, C3×C3⋊S3, C32⋊C9, C3×He3, C3×3- 1+2, C32⋊C18, He3⋊5S3, C33.C32, C32⋊C9⋊S3
Quotients: C1, C2, C3, S3, C6, C3×S3, C32⋊C6, C33⋊C6, He3.C6, C32⋊C9⋊S3
(1 7 4)(2 5 8)(10 13 16)(11 17 14)
(1 4 7)(2 5 8)(3 6 9)(10 16 13)(11 17 14)(12 18 15)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)
(1 2 9)(3 4 5)(6 7 8)(10 18 11)(12 14 13)(15 17 16)
(1 16)(2 17)(3 18)(4 10)(5 11)(6 12)(7 13)(8 14)(9 15)
G:=sub<Sym(18)| (1,7,4)(2,5,8)(10,13,16)(11,17,14), (1,4,7)(2,5,8)(3,6,9)(10,16,13)(11,17,14)(12,18,15), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18), (1,2,9)(3,4,5)(6,7,8)(10,18,11)(12,14,13)(15,17,16), (1,16)(2,17)(3,18)(4,10)(5,11)(6,12)(7,13)(8,14)(9,15)>;
G:=Group( (1,7,4)(2,5,8)(10,13,16)(11,17,14), (1,4,7)(2,5,8)(3,6,9)(10,16,13)(11,17,14)(12,18,15), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18), (1,2,9)(3,4,5)(6,7,8)(10,18,11)(12,14,13)(15,17,16), (1,16)(2,17)(3,18)(4,10)(5,11)(6,12)(7,13)(8,14)(9,15) );
G=PermutationGroup([[(1,7,4),(2,5,8),(10,13,16),(11,17,14)], [(1,4,7),(2,5,8),(3,6,9),(10,16,13),(11,17,14),(12,18,15)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18)], [(1,2,9),(3,4,5),(6,7,8),(10,18,11),(12,14,13),(15,17,16)], [(1,16),(2,17),(3,18),(4,10),(5,11),(6,12),(7,13),(8,14),(9,15)]])
G:=TransitiveGroup(18,173);
31 conjugacy classes
class | 1 | 2 | 3A | 3B | 3C | 3D | 3E | 3F | 3G | 3H | 3I | 6A | 6B | 9A | ··· | 9F | 9G | ··· | 9L | 18A | ··· | 18F |
order | 1 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 6 | 6 | 9 | ··· | 9 | 9 | ··· | 9 | 18 | ··· | 18 |
size | 1 | 27 | 1 | 1 | 2 | 2 | 2 | 18 | 18 | 18 | 18 | 27 | 27 | 9 | ··· | 9 | 18 | ··· | 18 | 27 | ··· | 27 |
31 irreducible representations
dim | 1 | 1 | 1 | 1 | 2 | 2 | 3 | 6 | 6 | 6 |
type | + | + | + | + | + | |||||
image | C1 | C2 | C3 | C6 | S3 | C3×S3 | He3.C6 | C32⋊C6 | C33⋊C6 | C32⋊C9⋊S3 |
kernel | C32⋊C9⋊S3 | C33.C32 | He3⋊5S3 | C3×He3 | C32⋊C9 | C33 | C3 | C32 | C3 | C1 |
# reps | 1 | 1 | 2 | 2 | 1 | 2 | 12 | 1 | 3 | 6 |
Matrix representation of C32⋊C9⋊S3 ►in GL6(𝔽19)
7 | 0 | 0 | 0 | 0 | 0 |
8 | 11 | 0 | 0 | 0 | 0 |
7 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 11 | 0 | 0 |
0 | 0 | 0 | 11 | 7 | 0 |
0 | 0 | 0 | 18 | 0 | 1 |
11 | 0 | 0 | 0 | 0 | 0 |
0 | 11 | 0 | 0 | 0 | 0 |
0 | 0 | 11 | 0 | 0 | 0 |
0 | 0 | 0 | 7 | 0 | 0 |
0 | 0 | 0 | 0 | 7 | 0 |
0 | 0 | 0 | 0 | 0 | 7 |
1 | 0 | 10 | 0 | 0 | 0 |
0 | 0 | 18 | 0 | 0 | 0 |
1 | 11 | 18 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 10 |
0 | 0 | 0 | 0 | 0 | 18 |
0 | 0 | 0 | 1 | 11 | 18 |
1 | 0 | 10 | 0 | 0 | 0 |
0 | 0 | 18 | 0 | 0 | 0 |
0 | 1 | 18 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 10 | 0 |
0 | 0 | 0 | 0 | 18 | 1 |
0 | 0 | 0 | 0 | 18 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
G:=sub<GL(6,GF(19))| [7,8,7,0,0,0,0,11,0,0,0,0,0,0,1,0,0,0,0,0,0,11,11,18,0,0,0,0,7,0,0,0,0,0,0,1],[11,0,0,0,0,0,0,11,0,0,0,0,0,0,11,0,0,0,0,0,0,7,0,0,0,0,0,0,7,0,0,0,0,0,0,7],[1,0,1,0,0,0,0,0,11,0,0,0,10,18,18,0,0,0,0,0,0,1,0,1,0,0,0,0,0,11,0,0,0,10,18,18],[1,0,0,0,0,0,0,0,1,0,0,0,10,18,18,0,0,0,0,0,0,1,0,0,0,0,0,10,18,18,0,0,0,0,1,0],[0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0] >;
C32⋊C9⋊S3 in GAP, Magma, Sage, TeX
C_3^2\rtimes C_9\rtimes S_3
% in TeX
G:=Group("C3^2:C9:S3");
// GroupNames label
G:=SmallGroup(486,7);
// by ID
G=gap.SmallGroup(486,7);
# by ID
G:=PCGroup([6,-2,-3,-3,-3,-3,-3,979,218,224,8643,873,1383,3244]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^3=c^9=d^3=e^2=1,a*b=b*a,c*a*c^-1=a*b^-1,d*a*d^-1=a*c^6,e*a*e=a^-1,b*c=c*b,b*d=d*b,e*b*e=b^-1,d*c*d^-1=a^-1*b*c^7,c*e=e*c,e*d*e=d^-1>;
// generators/relations